Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(4-Chloro-3-nitrophenyl)maleamic acid

U. Chaithanya, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a* }}$

a Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 21 February 2012; accepted 22 February 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.063 ; w R$ factor $=0.180 ;$ data-to-parameter ratio $=13.3$.

In the molecule of the title compound, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{5}$, the acyclic $\mathrm{C}=\mathrm{C}$ double bond is cis configured. The $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds of the acid group are in a relatively rare anti position to each other, due to the donation of intramolecular hydrogen bond to the amide by the carboxyl group. The nitro group is significantly twisted [dihedral angle $=66.9(3)^{\circ}$] out of the plane of the remaining atoms, which are almost coplanar (r.m.s. deviation for non-H atoms except the nitro group $=$ $0.202 \AA$). In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into zigzag chains running along the b axis.

Related literature

For our studies of the effects of substituents on the structures and other aspects of N-(aryl)amides, see: Gowda et al. (2000, 2003); Chaithanya et al. (2012); N-(aryl)methanesulfonamides, see: Gowda et al. (2007); N-chloroarylamides, see: Jyothi \& Gowda (2004) and N-bromoarylsulfonamides, see: Usha \& Gowda (2006).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{5}$
$M_{r}=270.63$
Monoclinic, $P 2_{1} / c$
$a=9.7187$ (9) A
$b=13.596$ (1) \AA
$c=8.4990$ (9) \AA
$\beta=99.64$ (1) ${ }^{\circ}$
$V=1107.16(18) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.42 \times 0.12 \times 0.06 \mathrm{~mm}$

Data collection

Oxford Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.863, T_{\text {max }}=0.979$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.180$
$S=0.97$
2243 reflections
169 parameters
2 restraints

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3O $\cdots \mathrm{O} 1$	$0.82(2)$	$1.67(2)$	$2.494(4)$	$174(7)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.86(2)$	2.01 (2)	$2.839(4)$	$162(4)$

Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGCBSR one-time grant to faculty.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5827).

References

Chaithanya, U., Foro, S. \& Gowda, B. T. (2012). Acta Cryst. E68. In the press.
Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2337.
Gowda, B. T., Kumar, B. H. A. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721-728.
Gowda, B. T., Usha, K. M. \& Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.
Jyothi, K. \& Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Usha, K. M. \& Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.

supplementary materials

Acta Cryst. (2012). E68, o873 [doi:10.1107/S1600536812008021]

N -(4-Chloro-3-nitrophenyl)maleamic acid

U. Chaithanya, Sabine Foro and B. Thimme Gowda

Comment

As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000, 2003; Chaithanya et al., 2012), N-(aryl)-methanesulfonamides (Gowda et al., 2007); N-chloroarylsulfonamides (Jyothi \& Gowda, 2004) and N-bromoarylsulfonamides (Usha \& Gowda, 2006), in the present work, the crystal structure of N-(4-Chloro-3-nitrophenyl)maleamic acid has been determined (Fig. 1). The conformations of the $\mathrm{N}-\mathrm{H}$ and the $\mathrm{C}=\mathrm{O}$ bonds in the amide segment are anti to each other. The $\mathrm{N}-\mathrm{H}$ bond is also anti to the meta-nitro group. Further, the conformation of the amide $\mathrm{C}=\mathrm{O}$ is anti to the H atom on the adjacent -CH group, while the carboxyl $\mathrm{C}=\mathrm{O}$ of the acid segment is syn to the adjacent -CH group. Furthermore, the $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bond of the acid group are in relatively rare anti position to each other, due to the donation of hydrogen bond to the amide by the carboxyl group, similar to that observed in N-(3-Chloro-4-methylphenyl)maleamic acid (I) (Chaithanya et al., 2012).
The dihedral angle between the phenyl ring and the amide group in the title compound is $11.52(27)^{\circ}$, compared to the value of $6.55(99)^{\circ}$ in (I).
In the structure, the pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds pack the molecules into zigzag chains (Table 1, Fig.2).

Experimental

Maleic anhydride $(0.025 \mathrm{~mol})$ in toluene $(25 \mathrm{ml})$ was treated dropwise with 4-chloro-3-nitroaniline $(0.025 \mathrm{~mol})$ also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 4-chloro-3-nitroaniline. The resultant solid N-(4-Chloro-3-nitrophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Rod like colorless single crystals of the title compound used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation of the solvent (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

The H atoms of the NH group and the OH group were located in a difference map and later restrained to the distance N $\mathrm{H}=0.86$ (2) \AA and $\mathrm{O}-\mathrm{H}=0.82$ (2) \AA, respectively. The other H atoms were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$. All H atoms were refined with isotropic displacement parameters set at $1.2 U_{\text {eq }}$.

Computing details

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

N-(4-Chloro-3-nitrophenyl)maleamic acid

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{5}$
$M_{r}=270.63$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.7187$ (9) \AA
$b=13.596$ (1) \AA
$c=8.4990(9) \AA$
$\beta=99.64$ (1) ${ }^{\circ}$
$V=1107.16(18) \AA^{3}$
$Z=4$
$F(000)=552$
$D_{\mathrm{x}}=1.624 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1582 reflections
$\theta=2.6-27.7^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rod, colourless
$0.42 \times 0.12 \times 0.06 \mathrm{~mm}$

Data collection

Oxford Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and φ scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.863, T_{\text {max }}=0.979$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.180$
$S=0.97$
2243 reflections
169 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

```
4360 measured reflections
2243 independent reflections
1540 reflections with \(I>2 \sigma(I)\)
\(R_{\text {int }}=0.025\)
\(\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.6^{\circ}\)
\(h=-12 \rightarrow 6\)
\(k=-16 \rightarrow 16\)
\(l=-7 \rightarrow 10\)
```

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0665 P)^{2}+3.5725 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.034$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25$ e \AA^{-3}

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C11	$-0.22417(12)$	$-0.02257(9)$	$0.06740(14)$	$0.0526(4)$
O1	$0.3160(3)$	$0.2207(2)$	$0.5078(4)$	$0.0543(10)$
O2	$0.6054(3)$	$0.3654(2)$	$0.8733(4)$	$0.0527(9)$
O3	$0.4475(4)$	$0.3576(2)$	$0.6601(4)$	$0.0582(10)$
H3O	$0.402(6)$	$0.315(3)$	$0.604(6)$	$0.087 *$
O4	$-0.0092(5)$	$0.2184(3)$	$0.0224(5)$	$0.0750(12)$
O5	$-0.1941(4)$	$0.1979(3)$	$0.1206(6)$	$0.0852(14)$
N1	$0.3025(3)$	$0.0549(2)$	$0.5150(4)$	$0.0353(8)$
H1N	$0.332(5)$	$0.004(2)$	$0.569(5)$	0.042^{*}
N2	$-0.0772(4)$	$0.1760(3)$	$0.1083(4)$	$0.0420(9)$
C1	$0.1800(4)$	$0.0411(3)$	$0.4016(5)$	$0.0320(9)$
C2	$0.1145(4)$	$0.1155(3)$	$0.3048(5)$	$0.0337(9)$
H2	0.1534	0.1781	0.3068	0.040^{*}

C3	$-0.0098(4)$	$0.0945(3)$	$0.2053(5)$	$0.0331(9)$
C4	$-0.0696(4)$	$0.0024(3)$	$0.1939(5)$	$0.0357(10)$
C5	$-0.0005(5)$	$-0.0720(3)$	$0.2858(5)$	$0.0441(11)$
H5	-0.0375	-0.1352	0.2787	0.053^{*}
C6	$0.1233(4)$	$-0.0536(3)$	$0.3887(5)$	$0.0416(11)$
H6	0.1688	-0.1045	0.4494	0.050^{*}
C7	$0.3599(4)$	$0.1411(3)$	$0.5669(5)$	$0.0357(9)$
C8	$0.4800(4)$	$0.1338(3)$	$0.6985(5)$	$0.0379(10)$
H8	0.5099	0.0704	0.7281	0.046^{*}
C9	$0.5505(4)$	$0.2064(3)$	$0.7794(5)$	$0.0409(10)$
H9	0.6240	0.1848	0.8561	0.049^{*}
C10	$0.5357(4)$	$0.3159(3)$	$0.7725(5)$	$0.0384(10)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0429(6)$	$0.0487(7)$	$0.0575(7)$	$-0.0113(5)$	$-0.0165(5)$	$-0.0070(6)$
O1	$0.0534(19)$	$0.0280(16)$	$0.067(2)$	$0.0018(14)$	$-0.0321(16)$	$-0.0018(15)$
O2	$0.059(2)$	$0.0404(18)$	$0.0501(19)$	$-0.0077(16)$	$-0.0147(16)$	$-0.0133(15)$
O3	$0.066(2)$	$0.0288(16)$	$0.067(2)$	$-0.0032(15)$	$-0.0280(18)$	$-0.0044(15)$
O4	$0.100(3)$	$0.053(2)$	$0.075(3)$	$0.007(2)$	$0.020(2)$	$0.026(2)$
O5	$0.051(2)$	$0.071(3)$	$0.126(4)$	$0.018(2)$	$-0.008(2)$	$0.027(3)$
N1	$0.0350(18)$	$0.0245(17)$	$0.0408(19)$	$-0.0004(14)$	$-0.0095(15)$	$0.0022(14)$
N2	$0.041(2)$	$0.0329(19)$	$0.045(2)$	$-0.0018(17)$	$-0.0123(17)$	$0.0000(17)$
C1	$0.0296(19)$	$0.028(2)$	$0.035(2)$	$-0.0004(16)$	$-0.0044(16)$	$-0.0027(16)$
C2	$0.035(2)$	$0.027(2)$	$0.035(2)$	$-0.0060(16)$	$-0.0063(17)$	$-0.0014(16)$
C3	$0.036(2)$	$0.028(2)$	$0.033(2)$	$0.0013(17)$	$-0.0020(17)$	$-0.0014(17)$
C4	$0.034(2)$	$0.032(2)$	$0.038(2)$	$-0.0053(16)$	$-0.0063(17)$	$-0.0078(17)$
C5	$0.050(2)$	$0.027(2)$	$0.050(3)$	$-0.0077(19)$	$-0.007(2)$	$-0.0007(19)$
C6	$0.044(2)$	$0.026(2)$	$0.048(2)$	$0.0010(18)$	$-0.012(2)$	$0.0027(18)$
C7	$0.032(2)$	$0.028(2)$	$0.043(2)$	$0.0011(17)$	$-0.0041(18)$	$-0.0006(17)$
C8	$0.040(2)$	$0.028(2)$	$0.041(2)$	$0.0037(18)$	$-0.0095(18)$	$-0.0013(18)$
C9	$0.040(2)$	$0.039(2)$	$0.039(2)$	$0.0034(19)$	$-0.0092(19)$	$0.0011(18)$
C10	$0.036(2)$	$0.035(2)$	$0.041(2)$	$-0.0022(18)$	$-0.0043(19)$	$-0.0050(18)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 4$	$1.729(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.383(5)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.239(5)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{O} 2-\mathrm{C} 10$	$1.205(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.377(5)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.302(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.382(6)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	$0.82(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.386(6)$
$\mathrm{O} 4-\mathrm{N} 2$	$1.209(5)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{O} 5-\mathrm{N} 2$	$1.196(5)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1 — \mathrm{C} 7$	$1.340(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.479(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.413(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.326(6)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N}$	$0.857(19)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{~N} 2-\mathrm{C} 3$	$1.469(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.497(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.389(5)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.397(6)$		

$\mathrm{C} 10-\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	$110(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$126.7(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$117(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$115(3)$
$\mathrm{O} 5-\mathrm{N} 2-\mathrm{O} 4$	$123.9(4)$
$\mathrm{O} 5-\mathrm{N} 2-\mathrm{C} 3$	$118.7(4)$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 3$	$117.5(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.2(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$123.8(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$116.9(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.6(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$123.1(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$	$120.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$116.7(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	$119.8(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 11$	$12.4(7)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-167.4(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$3.9(6)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-176.0(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-2.1(7)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.4(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$57.7(6)$
$\mathrm{O} 5-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-123.7(5)$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-122.8(5)$
$\mathrm{O} 5-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$55.7(5)$
$\mathrm{O} 4-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$-0.5(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.9(4)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 1$	

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.8(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.4(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.8
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.8
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$122.3(3)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$122.7(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$115.0(3)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$128.0(4)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	116.0
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	116.0
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$133.0(4)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	113.5
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	113.5
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{O} 3$	$120.1(4)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$119.3(4)$
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 9$	$120.6(3)$

$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 1$	$0.0(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.4(7)$
$\mathrm{C} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.7(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.3(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-3.0(7)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$176.8(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-6.7(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$173.9(4)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$5.4(8)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-175.2(5)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.3(9)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 2$	$171.7(5)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 3$	$-7.5(8)$

Hydrogen-bond geometry ($\stackrel{A}{ },{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 O \cdots \mathrm{O} 1$	$0.82(2)$	$1.67(2)$	$2.494(4)$	$174(7)$
$\mathrm{N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.86(2)$	$2.01(2)$	$2.839(4)$	$162(4)$

Symmetry code: (i) $-x+1, y-1 / 2,-z+3 / 2$.

